Bubble chart
A bubble chart displays multi-dimensional data in a two-dimensional plot. It can be considered as a variation of the scatterplot, in which the dots are replaced with bubbles. However, unlike a scatterplot which has only two variables defined by the X and Y axis, on a bubble chart each data point (bubble) can be assigned with a third variable (by size of bubble) and a fourth variable (by colour of bubble)
More about: Bubble chart - Other tutorials: Matplotlib D3
Bubble chart
# Loading required packages
library(unhcrthemes)
library(tidyverse)
library(scales)
library(ggrepel)
# Loading data
df <- read_csv("https://raw.githubusercontent.com/GDS-ODSSS/unhcr-dataviz-platform/master/data/correlation/bubble.csv")
# Plot
ggplot(
df,
aes(x = refugee_number, y = idp_number)
) +
geom_point(aes(size = total_number),
color = unhcr_pal(n = 1, "pal_blue"),
alpha = 0.6
) +
scale_size(
range = c(4, 16),
name = "Total population",
labels = scales::label_number(scale_cut = scales::cut_short_scale()),
breaks = c(8e6, 10e6, 12e6)
) +
geom_text_repel(aes(label = region),
size = 9 / ggplot2::.pt
) +
labs(
title = "Comparison of refugee and IDP population by region | 2021",
y = "Number of IDPs",
x = "Number of refugees",
caption = "Source: UNHCR Refugee Data Finder<br>© UNHCR, The UN Refugee Agency"
) +
scale_x_continuous(labels = scales::label_number(scale_cut = scales::cut_short_scale())) +
scale_y_continuous(
labels = scales::label_number(scale_cut = scales::cut_short_scale()),
breaks = scales::pretty_breaks(n = 6)
) +
coord_cartesian(clip = "off") +
theme_unhcr(grid = "XY", axis = FALSE, legend_title = TRUE)
Bubble chart with colours
# Loading required packages
library(unhcrthemes)
library(tidyverse)
library(scales)
library(ggrepel)
# Loading data
df <- read_csv("https://raw.githubusercontent.com/GDS-ODSSS/unhcr-dataviz-platform/master/data/correlation/bubble.csv")
# Order regions for visualization
df$region <- factor(df$region,
levels = c("East and Horn of Africa and Great Lakes", "Southern Africa", "West and Central Africa", "Americas", "Asia and the Pacific", "Europe", "Middle East and North Africa")
)
# Plot
ggplot(
df,
aes(x = refugee_number, y = idp_number)
) +
geom_point(aes(size = total_number, color = region),
alpha = 0.6
) +
scale_size(
range = c(4, 16),
name = "Total population",
labels = scales::label_number(scale_cut = scales::cut_short_scale()),
breaks = c(8e6, 10e6, 12e6)
) +
geom_text_repel(aes(label = region),
size = 9 / ggplot2::.pt
) +
labs(
title = "Comparison of refugee and IDP population by region | 2021",
y = "Number of IDPs",
x = "Number of refugees",
caption = "Source: UNHCR Refugee Data Finder<br>© UNHCR, The UN Refugee Agency"
) +
scale_x_continuous(labels = scales::label_number(scale_cut = scales::cut_short_scale())) +
scale_y_continuous(
labels = scales::label_number(scale_cut = scales::cut_short_scale()),
breaks = scales::pretty_breaks(n = 6)
) +
scale_color_unhcr_d(palette = "pal_unhcr_region", guide = "none") +
coord_cartesian(clip = "off") +
theme_unhcr(grid = "XY", axis = FALSE, legend_title = TRUE) +
guides(size = guide_legend(override.aes = list(shape = 21)))
Connected scatterplot
A connected scatterplot is a type of visualization that displays the evolution of a series of data points that are connected by straight line segments. In some cases, it is not the most intuitive to read; but it is impressive for storytelling.
More about: Connected scatterplot - Other tutorials: Matplotlib D3
# Loading required packages
library(unhcrthemes)
library(tidyverse)
library(scales)
library(ggrepel)
# Loading data
df <- read_csv("https://raw.githubusercontent.com/GDS-ODSSS/unhcr-dataviz-platform/master/data/correlation/scatterplot_connected.csv")
# Plot
ggplot(
df,
aes(x = refugee_number, y = idp_number)
) +
geom_segment(
aes(
xend = c(tail(refugee_number, n = -1), NA),
yend = c(tail(idp_number, n = -1), NA)
),
color = unhcr_pal(n = 1, "pal_grey")
) +
geom_point(
color = unhcr_pal(n = 1, "pal_blue"),
size = 3
) +
ggrepel::geom_text_repel(
data = df[seq(1, nrow(df), 2), ],
aes(label = year),
size = 9 / .pt,
point.padding = 5
) +
labs(
title = "Evolution of refugee vs IDP population in Afghanistan | 2001-2021",
y = "Number of IDPs", x = "Number of refugees",
caption = "Source: UNHCR Refugee Data Finder<br>© UNHCR, The UN Refugee Agency"
) +
scale_x_continuous(
labels = scales::label_number(scale_cut = scales::cut_short_scale())
) +
scale_y_continuous(
labels = scales::label_number(scale_cut = scales::cut_short_scale())
) +
theme_unhcr()
Heatmap
A heatmap is a type of visualization that values are depicted through variations in colour within a two-dimensional matrix of cells. It allows us to visualize complex data and understand it at a glance.
More about: Heatmap - Other tutorials: Matplotlib
Heatmap
# Loading required packages
library(unhcrthemes)
library(tidyverse)
library(scales)
# Loading data
df <- read_csv("https://raw.githubusercontent.com/GDS-ODSSS/unhcr-dataviz-platform/master/data/correlation/heatmap.csv")
# Plot
ggplot(
df,
aes(x = factor(year), y = fct_rev(location))
) +
geom_tile(aes(fill = values),
color = "white",
linetype = 1,
lwd = .5
) +
labs(
title = "Refugee population by region | 2011 - 2020",
caption = "Source: UNHCR Refugee Data Finder<br>© UNHCR, The UN Refugee Agency"
) +
scale_y_discrete(labels = scales::label_wrap(17)) +
scale_fill_stepsn(
colors = unhcr_pal(n = 5, "pal_blue"),
n.break = 5,
name = "Number of people\nin millions"
) +
coord_fixed() +
theme_unhcr(grid = FALSE, axis = FALSE, axis_title = FALSE, legend_title = TRUE)
Heatmap with labels
# Loading required packages
library(unhcrthemes)
library(tidyverse)
library(scales)
# Loading data
df <- read_csv("https://raw.githubusercontent.com/GDS-ODSSS/unhcr-dataviz-platform/master/data/correlation/heatmap.csv")
# Plot
ggplot(
df,
aes(x = factor(year), y = fct_rev(location))
) +
geom_tile(aes(fill = values),
color = "white",
linetype = 1,
lwd = .5
) +
geom_text(aes(label = scales::number(values, accuracy = .1)),
color = if_else(df$values > 2, "white", unhcr_pal(n = 5, "pal_grey")[5]),
size = 10 / ggplot2::.pt
) +
labs(
title = "Refugee population by region | 2011 - 2020",
subtitle = "Number of people in millions",
caption = "Source: UNHCR Refugee Data Finder<br>© UNHCR, The UN Refugee Agency"
) +
scale_y_discrete(labels = scales::label_wrap(17)) +
scale_fill_stepsn(
colors = unhcr_pal(n = 5, "pal_blue"),
n.break = 5
) +
coord_fixed() +
theme_unhcr(grid = FALSE, axis = FALSE, axis_title = FALSE, legend = FALSE)
Scatterplot
A scatterplot is a type of visualization using Cartesian Coordinates to display two variables for a set of data. The data are displayed as a collection of dots. The position of each dot on the horizontal and vertical axis indicates the values for an individual data point.
More about: Scatterplot - Other tutorials: Matplotlib D3
Scatterplot
# Loading required packages
library(unhcrthemes)
library(tidyverse)
library(scales)
library(ggrepel)
# Loading data
df <- read_csv("https://raw.githubusercontent.com/GDS-ODSSS/unhcr-dataviz-platform/master/data/correlation/scatterplot.csv")
# Plot
ggplot(
df,
aes(x = refugee_number, y = idp_number)
) +
geom_point(
color = unhcr_pal(n = 1, "pal_blue"),
size = 2.5
) +
ggrepel::geom_text_repel(aes(label = region),
size = 10 / ggplot2::.pt
) +
labs(
title = "Comparison of refugee and IDP population by region | 2021",
y = "Number of IDPs", x = "Number of refugees",
caption = "Source: UNHCR Refugee Data Finder<br>© UNHCR, The UN Refugee Agency"
) +
scale_x_continuous(
labels = scales::label_number(scale_cut = scales::cut_short_scale())
) +
scale_y_continuous(
labels = scales::label_number(scale_cut = scales::cut_short_scale()),
breaks = seq(2e6, 12e6, by = 2e6)
) +
theme_unhcr()
Scatterplot with colours
# Loading required packages
library(unhcrthemes)
library(tidyverse)
library(scales)
library(ggrepel)
# Loading data
df <- read_csv("https://raw.githubusercontent.com/GDS-ODSSS/unhcr-dataviz-platform/master/data/correlation/scatterplot.csv")
# Order regions for visualization
df$region <- factor(df$region,
levels = c(
"East and Horn of Africa and Great Lakes",
"Southern Africa",
"West and Central Africa",
"Americas",
"Asia and the Pacific",
"Europe",
"Middle East and North Africa"
)
)
# Plot
ggplot(
df,
aes(x = refugee_number, y = idp_number)
) +
geom_point(
aes(color = region),
size = 2.5
) +
ggrepel::geom_text_repel(aes(label = region),
size = 10 / ggplot2::.pt
) +
labs(
title = "Comparison of refugee and IDP population by region | 2021",
y = "Number of IDPs", x = "Number of refugees",
caption = "Source: UNHCR Refugee Data Finder<br>© UNHCR, The UN Refugee Agency"
) +
scale_x_continuous(
labels = scales::label_number(scale_cut = scales::cut_short_scale())
) +
scale_y_continuous(
labels = scales::label_number(scale_cut = scales::cut_short_scale()),
breaks = seq(2e6, 12e6, by = 2e6)
) +
scale_color_unhcr_d(palette = "pal_unhcr_region") +
theme_unhcr(legend = FALSE)